Search results

1 – 3 of 3
Article
Publication date: 29 January 2024

He Lu, Yuhou Wu, Zijin Liu, He Wang, Guangyu Yan, Xu Bai, Jiancheng Guo and Tongxiang Zheng

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters…

Abstract

Purpose

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters for preparing CrAlN coatings on silicon nitride surfaces, and reveal the microscopic mechanism of process parameter influence on coating wear resistance.

Design/methodology/approach

This study used molecular dynamics to analyze how process parameters affected the nucleation density, micromorphology, densification and internal stress of CrAlN coatings. An orthogonal test method was used to examine how deposition time, substrate temperature, nitrogen-argon flow rate and sputtering power impacted the wear resistance of CrAlN coatings under dry friction conditions.

Findings

Nucleation density, micromorphology, densification and internal stress have a significant influence on the surface morphology and wear resistance of CrAlN coatings. The process parameters for better wear resistance of the CrAlN coatings were at a deposition time of 120 min, a substrate temperature of 573 K, a nitrogen-argon flow rate of 1:1 and a sputtering power of 160 W.

Originality/value

Simulation analysis and experimental results of this paper can provide data to assist in setting process parameters for applying CrAlN coatings to silicon nitride bearings.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2023

Jian Sun, Guangxiang Zhang, Zhongxian Xia, Zhigang Bao, Jinmei Yao, Xin Fang, Zhe Zhang and Renyun Guan

To understand the service performance of full ceramic ball bearings under extreme working conditions and improve their service life, dynamic characteristic tests of full ceramic…

Abstract

Purpose

To understand the service performance of full ceramic ball bearings under extreme working conditions and improve their service life, dynamic characteristic tests of full ceramic ball bearings under ultra-low temperature conditions were carried out by a low-temperature bearing life testing machine, and temperature rise and friction were measured under extreme low-temperature environment.

Design/methodology/approach

The heat-flow coupling model of bearing was established by CFD software, and the test results were further analyzed.

Findings

The results show that the temperature rise of the bearing is not obvious in the liquid nitrogen environment. With the increase of the chamber temperature, the lubrication state of the bearing changes, resulting in the temperature rise of the outer ring of the bearing. As the temperature of the test chamber increases, the friction force on the bearing increases first and then decreases under the action of multifactor coupling.

Research limitations/implications

The research results provide test data and theoretical basis for the application of all-ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Practical implications

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Social implications

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Originality/value

The research results provide test data and theoretical basis for the application of full ceramic ball bearings in aerospace and other fields and have important significance for improving the service life of high-end equipment under extreme working conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2023

Jian Sun, Xin Fang, Jinmei Yao, Zhe Zhang, Renyun Guan and Guangxiang Zhang

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Abstract

Purpose

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Design/methodology/approach

The paper established an analysis model based on the fluid–solid conjugate heat transfer theory for full ceramic ball bearings. The distribution of flow, temperature and pressure field of bearings under variable working conditions is analyzed. Meanwhile, the mathematical model of elastohydrodynamic lubrication (EHL) of full ceramic ball bearings is established. The numerical analysis is used to study the influence of variable working conditions on the lubricant film thickness and pressure distribution of bearings. The temperature rise test of full ceramic ball bearing under oil lubrication was carried out to verify the correctness of simulation results.

Findings

As the speed increased, the oil volume fraction in full ceramic ball bearing decreased and the surface pressure of rolling element increased. The temperature rise of full ceramic ball bearings increases with increasing speed and load. The lubricant film thickness of full ceramic ball bearing is positively correlated with speed and negatively correlated with load. The pressure of lubricating film is positively correlated with speed and load. The test shows that the higher inner ring speed and radial load, the higher the steady-state temperature rise of full ceramic ball bearing. The test results are in high agreement with simulation results.

Originality/value

Based on the fluid–solid conjugate heat transfer theory and combined with Reynolds equation, lubricating oil film thickness formula, viscosity temperature and viscosity pressure formula. The thermal analysis model and EHL mathematical model of ceramic ball bearings are established. The flow field, temperature field and pressure field distribution of the full ceramic ball bearing are determined. And the thickness and pressure distribution of lubricating oil film in the contact area of full ceramic ball bearing were determined.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0126/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 3 of 3